P Value

with

Chi-Square Distribution

What is **P Value**?

Assuming H_0 is valid, the p-value is is the probability of getting

a value of the Computed Test Statistics that is at least

as extreme as the one representing the sample data.

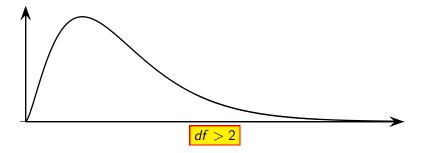
What does **P Value** provide?

The p-value provides the smallest level of significance for which the null hypothesis H_0 would be rejected and the alternative hypothesis H_1 would be supported.

What is Chi-Square Distribution?

The chi-square distribution is a method to find the probability of seeing certain results when working with categorical data.

It is like we are comparing observed data to what it is expected under certain assumption.


- ► The density curve is not symmetric.
- ► The density curve is not bell-shaped.
- The density curve begins at 0 and it is skewed to the right.
- The total area under the curve is 1.
- It also comes with degrees of freedom.

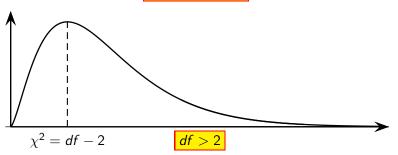
It is also worth noting that the density curve may look bell-shaped

P Value

as degrees of freedom increases.

Here is how the χ^2 distribution curve look like.

Elementary Statistics


P Value

Where does χ^2 **Distribution** curve peak?

• When
$$df \leq 2$$
, the χ^2 distribution curve $\rightarrow \infty$ as $\chi^2 \rightarrow 0$.

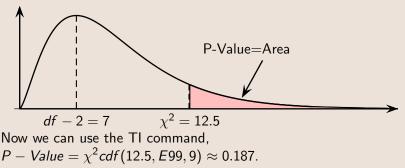
• When Ndf > 2, the χ^2 distribution curve has a peak point at

$$\chi^2 = df - 2$$

P Value & CTS :	χ^2 :
-----------------	------------

Testing Type	TI Command
Right-Tail Test	$\chi^2 cdf(CTS, E99, df)$
Left-Tail Test	$\chi^2 cdf(0, CTS, df)$
Two -Tail Test	• Find the area on both sides of CTS χ^2
	• Multiply the smaller area by 2

Elementary Statistics


Example:

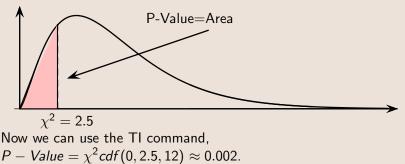
Find the corresponding P-Value for a Right-Tail Test with $CTS \chi^2 = 12.5$ with df = 9. Round to 3-decimal places.

P Value

Solution:

We start by drawing the chi-square curve, then shade and label accordingly.

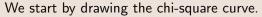
Elementary Statistics

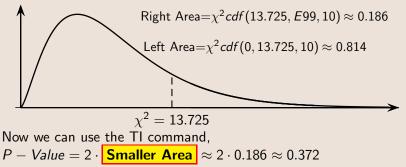

Example:

Find the corresponding P-Value for a Left-Tail Test with CTS $\chi^2 = 2.5$ with df = 12. Round to 3-decimal places.

Solution:

We start by drawing the chi-square curve, then shade and label accordingly.

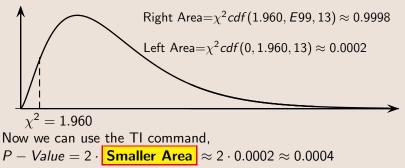

P Value



Example:

Find the corresponding P-Value for a Two-Tail Test with CTS $\chi^2 = 13.725$ with df = 10. Round to 3-decimal places.

Solution:


Example:

Find the corresponding P-Value for a Two-Tail Test with CTS $\chi^2=1.960$ with df=13.

Value

Solution:

We start by drawing the chi-square curve.

